On the universal CH0 group of cubic hypersurfaces

نویسنده

  • Claire Voisin
چکیده

We study the existence of a Chow-theoretic decomposition of the diagonal of a smooth cubic hypersurface, or equivalently, the universal triviality of its CH0-group. We prove that for odd dimensional cubic hypersurfaces or for cubic fourfolds, this is equivalent to the existence of a cohomological decomposition of the diagonal, and we translate geometrically this last condition. For cubic threefolds X, this turns out to be equivalent to the algebraicity of the minimal class θ/4! of the intermediate Jacobian J(X). In dimension 4, we show that a special cubic fourfold with discriminant not divisible by 4 has universally trivial CH0 group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unirational threefolds with no universal codimension 2 cycle

We prove that the general quartic double solid with k ≤ 7 nodes does not admit a Chow theoretic decomposition of the diagonal, (or equivalently has a nontrivial universal CH0 group,) and the same holds if we replace in this statement “Chow theoretic” by “cohomological”. In particular, it is not stably rational. We also deduce that the general quartic double solid with seven nodes does not admit...

متن کامل

Zero-cycles on varieties over finite fields

For any field k, Milnor [Mi] defined a sequence of groups K 0 (k), K M 1 (k), K M 2 (k), . . . which later came to be known as Milnor K-groups. These were studied extensively by Bass and Tate [BT], Suslin [Su], Kato [Ka1], [Ka2] and others. In [Som], Somekawa investigates a generalization of this definition proposed by Kato: given semi-abelian varieties G1, . . . , Gs over a field k, there is a...

متن کامل

ar X iv : m at h / 96 02 21 3 v 1 [ m at h . D G ] 2 9 Fe b 19 96 HOMOGENEOUS SPECIAL GEOMETRY VICENTE

Motivated by the physical concept of special geometry two mathematical constructions are studied, which relate real hypersurfaces to tube domains and complex Lagrangean cones respectively. Methods are developed for the classification of homogeneous Riemannian hypersurfaces and for the classification of linear transitive reductive algebraic group actions on pseudo Riemannian hypersurfaces. The t...

متن کامل

Symplectic involutions of K 3 surfaces act trivially on CH 0

For a smooth complex projective variety X, Mumford has shown in [9] that the triviality of the Chow group CH0(X), i.e. CH0(X)hom = 0, implies the vanishing of holomorphic forms of positive degree onX. An immediate generalization is the fact that a 0-correspondence Γ ∈ CH(Y ×X), with d = dimX, which induces the 0-map Γ∗ : CH0(Y )hom → CH0(X)hom has the property that the maps Γ∗ : H(X) → H(Y ) va...

متن کامل

RATIONAL POINTS ON CUBIC HYPERSURFACES OVER Fq(t)

The Hasse principle and weak approximation is established for non-singular cubic hypersurfaces X over the function field Fq(t), provided that char(Fq) > 3 and X has dimension at least 6.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015